Migrate Pytorch To Accelerator0 26 1

1.0.0·Last update Jun 10, 2024·
by@ppashakhanloo

Short description

This codemod converts existing PyTorch code that follows the standard naming conventions to use HuggingFace Accelerate 0.26.1.

Detailed description

This codemod converts existing PyTorch code that follows the standard naming conventions to use HuggingFace Accelerate 0.26.1 so that ML code can easily run in a distributed manner. The changes include the additional import statements and some changes when device is concerned.

https://huggingface.co/docs/accelerate/v0.26.1/en/basic_tutorials/migration

Examples

Before

import torch
device = "cuda"
model.to(device)
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
scheduler.step()

After

import torch
import accelerator
device = accelerator.device
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
scheduler.step()

Build custom codemods

Use AI-powered codemod studio and automate undifferentiated tasks for yourself, colleagues or the community

background illustrationGet Started Now